首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38995篇
  免费   2555篇
  国内免费   16篇
  2023年   198篇
  2022年   194篇
  2021年   918篇
  2020年   535篇
  2019年   698篇
  2018年   963篇
  2017年   818篇
  2016年   1362篇
  2015年   2066篇
  2014年   2200篇
  2013年   3022篇
  2012年   3433篇
  2011年   3281篇
  2010年   2014篇
  2009年   1720篇
  2008年   2449篇
  2007年   2367篇
  2006年   2096篇
  2005年   1893篇
  2004年   1786篇
  2003年   1721篇
  2002年   1546篇
  2001年   308篇
  2000年   212篇
  1999年   300篇
  1998年   383篇
  1997年   260篇
  1996年   224篇
  1995年   231篇
  1994年   224篇
  1993年   220篇
  1992年   135篇
  1991年   148篇
  1990年   151篇
  1989年   112篇
  1988年   102篇
  1987年   92篇
  1986年   74篇
  1985年   105篇
  1984年   95篇
  1983年   76篇
  1982年   88篇
  1981年   81篇
  1980年   80篇
  1979年   74篇
  1978年   41篇
  1977年   50篇
  1976年   39篇
  1975年   41篇
  1973年   42篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
A range of debilitating human diseases is known to be associated with the formation of stable highly organized protein aggregates known as amyloid fibrils. The early prefibrillar aggregates behave as cytotoxic agents and their toxicity appears to result from an intrinsic ability to impair fundamental cellular processes by interacting with cellular membranes, causing oxidative stress and increase in free Ca2+ that lead to apoptotic or necrotic cell death. However, specific signaling pathways that underlie amyloid pathogenicity remain still unclear. This work aimed to clarify cell impairment induced by amyloid aggregated. To this end, we used a combined proteomic and one‐dimensional 1H‐NMR approach on NIH‐3T3 cells exposed to prefibrillar aggregates from the amyloidogenic apomyoglobin mutant W7FW14F. The results indicated that cell exposure to prefibrillar aggregates induces changes of the expression level of proteins and metabolites involved in stress response. The majority of the proteins and metabolites detected are reported to be related to oxidative stress, perturbation of calcium homeostasis, apoptotic and survival pathways, and membrane damage. In conclusion, the combined proteomic and 1H‐NMR metabonomic approach, described in this study, contributes to unveil novel proteins and metabolites that could take part to the general framework of the toxicity induced by amyloid aggregates. These findings offer new insights in therapeutic and diagnostic opportunities. J. Cell. Physiol. 228: 1359–1367, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
992.
993.
994.
NMDA receptor‐mediated excitotoxicity is thought to play a pivotal role in the pathogenesis of Huntington's disease (HD). The neurotrophin brain‐derived neurotrophic factor (BDNF), which is also highly involved in HD and whose effects are modulated by adenosine A2ARs, influences the activity and expression of striatal NMDA receptors. In electrophysiology experiments, we investigated the role of BDNF toward NMDA‐induced effects in HD models, and the possible involvement of A2ARs. In corticostriatal slices from wild‐type mice and age‐matched symptomatic R6/2 mice (a model of HD), NMDA application (75 μM) induced a transient or a permanent (i.e., toxic) reduction of field potential amplitude, respectively. BDNF (10 ng/mL) potentiated NMDA effects in wild‐type, while it protected from NMDA toxicity in R6/2 mice. Both effects of BDNF were prevented by A2AR blockade. The protective effect of BDNF against NMDA‐induced toxicity was reproduced in a cellular model of HD. These findings may have very important implications for the neuroprotective potential of BDNF and A2AR ligands in HD.  相似文献   
995.
TTLL5/STAMP (tubulin tyrosine ligase-like family member 5) has multiple activities in cells. TTLL5 is one of 13 TTLLs, has polyglutamylation activity, augments the activity of p160 coactivators (SRC-1 and TIF2) in glucocorticoid receptor-regulated gene induction and repression, and displays steroid-independent growth activity with several cell types. To examine TTLL5/STAMP functions in whole animals, mice were prepared with an internal deletion that eliminated several activities of the Stamp gene. This mutation causes both reduced levels of STAMP mRNA and C-terminal truncation of STAMP protein. Homozygous targeted mutant (Stamptm/tm) mice appear normal except for marked decreases in male fertility associated with defects in progressive sperm motility. Abnormal axonemal structures with loss of tubulin doublets occur in most Stamptm/tm sperm tails in conjunction with substantial reduction in α-tubulin polyglutamylation, which closely correlates with the reduction in mutant STAMP mRNA. The axonemes in other structures appear unaffected. There is no obvious change in the organs for sperm development of WT versus Stamptm/tm males despite the levels of WT STAMP mRNA in testes being 20-fold higher than in any other organ examined. This defect in male fertility is unrelated to other Ttll genes or 24 genes previously identified as important for sperm function. Thus, STAMP appears to participate in a unique, tissue-selective TTLL-mediated pathway for α-tubulin polyglutamylation that is required for sperm maturation and motility and may be relevant for male fertility.  相似文献   
996.
Eukaryotic translation elongation factor 2 (eEF2) facilitates the movement of the peptidyl tRNA-mRNA complex from the A site of the ribosome to the P site during protein synthesis. ADP-ribosylation (ADPR) of eEF2 by bacterial toxins on a unique diphthamide residue inhibits its translocation activity, but the mechanism is unclear. We have employed a hormone-inducible diphtheria toxin (DT) expression system in Saccharomyces cerevisiae which allows for the rapid induction of ADPR-eEF2 to examine the effects of DT in vivo. ADPR of eEF2 resulted in a decrease in total protein synthesis consistent with a defect in translation elongation. Association of eEF2 with polyribosomes, however, was unchanged upon expression of DT. Upon prolonged exposure to DT, cells with an abnormal morphology and increased DNA content accumulated. This observation was specific to DT expression and was not observed when translation elongation was inhibited by other methods. Examination of these cells by electron microscopy indicated a defect in cell separation following mitosis. These results suggest that expression of proteins late in the cell cycle is particularly sensitive to inhibition by ADPR-eEF2.  相似文献   
997.
998.
999.
CD11c/CD18 (αXβ2, p150/95, or complement receptor 4, CR4) is a monocyte/macrophage-enriched integrin that has been reported to bind to a variety of ligands. These include cell surface proteins, extracellular matrix proteins, and soluble ligands. The regulation of ligand binding to CD11c/CD18 has remained poorly understood. Previous work has shown that both α-chain and β-chain phosphorylations of CD11a/CD18 and CD11b/CD18 are needed for activity, but no corresponding studies on CD11c/CD18 have been performed. In this study, we have identified the phosphorylation site of CD11c as Ser-1158 and show that it is pivotal for adherence and phagocytosis.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号